Spasticity Management: Pharmacological treatment

Val Stevenson
Plan

Devising a treatment plan
- Impact of spasticity on the person
- Assessment

Interventions and team management
- Overview of treatments
- Oral drugs
- (Botulinum toxin and Intrathecal baclofen)
- Intrathecal phenol
- Surgery

Long term follow up
Impact of Spasticity and Spasms

Negative

- Washing
- Feeding
- Dressing
- Relationships
- Bladder & Bowel
- Posture
- Sexual activity
- Mood
- Safety

Positive

- PWS & UMN Syndrome
- Likes movement associated with spasms
- Mobility
- Transfers
- Body Image
- Maintains muscle bulk
- Maintains vascular flow, prevent DVT
- Uses spasms to assist mobility

Remember spasticity can also be useful.
Spasticity Assessment

- Information gathering
- MDT Outpatient clinic - ICP
 - Who? Dr, PT, Nurse.....
- Effect of spasticity, spasms on daily activities incl sleep, mood, participation
- Assess patient expectations
- Look for trigger factors
Triggers and noxious stimuli

- Skin
- Bowels
- Bladder
- Splints
- Orthotics
- Pain, skin
- Seating & positioning
Measures

- Tone - Ashworth (1964)
- Range of movement - Goniometry
- Spasm scale - (Penn et al 1989)
- Visual analogues of pain, comfort, leg stiffness
- Description of position in W/C- photos
- MAIN PROBLEM

GOAL
Goal

Our Goal for the Week
Options for Spasticity Management

- **MILD SPASTICITY**
 - Oral Medication
 - Inpatient Rehabilitation
 - Focal Treatments
 - Intrathecal Baclofen
 - Intrathecal Phenol

- **SEVERE SPASTICITY**
 - Inpatient Rehabilitation
 - Inpatient Rehabilitation
 - Inpatient Rehabilitation

- **Surgical Options**

Primary → Teamwork → Secondary

Intermediate
Spasticity Management

- Oral Medication
- Botulinum Toxin
- Inpatient Rehabilitation
- Inpatient Options
- Intrathecal Baclofen
- Intrathecal Phenol
- Surgical Options

Wessex ACPIN Spasticity Presentation 2009. © Dr Val Stevenson
Individualised Treatment Plan

- **Education**
 - What is spasticity?
 - Contribution of spasticity to current problems/function

- **Management of trigger factors**

- **Physical management programme**
 - Positioning, Seating, Standing, Stretches, Strengthening

- **Pharmacological treatment**
Physical Intervention - Aims

- Remove physical trigger factors
- Determine spasticity needed for function and what is not
- If needed → prevent contracture and overuse of spasticity
- If not needed → re-educate movement patterns
- Maximise use of weakened muscles
- Maintain/improve soft tissue length
Pharmacological Therapies

- **Generalised**
 - Baclofen, Tizanidine, Dantrolene, Benzodiazepines, Gabapentin

- **Focal**
 - Botulinum toxin
 - Regional nerve blocks

- **Intrathecal**
 - Baclofen
 - Phenol
Issues with Oral Drugs

- Optimisation of effects
 - Timing, drug choice
- Side effects
- Blood monitoring
- Exposing weakness
 - Trunk and lower limbs
- Mechanism for monitoring effect and adjusting dose

Remember- the aim is to improve function and minimise complications, not simply to reduce spasticity
Optimisation

Getting the most out of the drugs

Timing
- Tablets on waking. Not with breakfast
- Adjust to activities eg. Car travel, work patterns, therapy, sexual activity

Drug choice
- Take advantage of other drug actions
 - Clonazepam and sedation- for nocturnal spasms
 - Gabapentin- for neuropathic pain

Mechanism for monitoring effect and adjusting dose
- Patient and carer education, treating therapists, GP
Combining drugs

Start low and go slow

- **Start first choice drug**
 - Increase according to effect or tolerance
 - Stop titration when desired effect achieved or side effects occur
 - If no effect at full tolerated dose, withdraw

- **Add in 2nd drug**
 - Repeat process
Baclofen

- GABA derivative (inhibitory neurotransmitter)
- Plasma \(\frac{1}{2} \) life 3-4 hours
- Dose 5mg od- 40mg tds
- Side effects common; drowsiness, confusion, dizziness, weakness
- Avoid abrupt withdrawal
Tizanidine

- Equivalent to baclofen and diazepam in comparison studies but less side effects
- α adrenergic antagonist; reduces excitatory spinal cord transmission
- Side effects - drowsiness, dry mouth
- LFT’s necessary - transient hepatotoxicity may occur
Dantrolene

- Acts peripherally on skeletal muscle by inhibiting release of calcium ions from the sarcoplasmic reticulum
- Reduces reflex > voluntary contractions
- Plasma ½ life 9 hours (25mg- 100mg qds)
- Side effects- drowsiness, weakness, GI symptoms
- LFT’s necessary- hepatotoxicity may occur
Benzodiazepines

- Potentiation of GABA action post-synaptically
- Inhibition of descending excitatory pathways
- Role limited by side effects; drowsiness and dependence
- Clonazepam useful for nocturnal spasms
Gabapentin

- Short term reduction in spasticity demonstrated in placebo controlled trials
 - Patients reported improved ADL’s, sleep, mood and appetite
- Potentiation of GABA action
- Side effects; fatigue, reduced concentration, drowsiness and unsteadiness
What if the drugs don’t work?

Review trigger factors and physical management programme before escalating therapy

Other treatment options:
- Focal treatments
 - Chemical neurolysis or botulinum toxin
- Intrathecal baclofen
- Intrathecal phenol
- Surgery
Intrathecal Phenol

- Protein coagulation & necrosis
- Axonal degeneration
- Indiscriminate destruction of motor and sensory fibres
Selection Criteria

- Severe lower limb spasticity
- Oral Medication, physiotherapy, nursing no longer effective
- ITB not appropriate
- Bladder & bowel dysfunction with effective management programme in place
- Aware of potential sexual dysfunction
- Sensory impairment of lower limbs
Efficacy

25 patients

- Goals of treatment:
 - Increase ease of care
 - Comfort
 - Positioning in bed or wheelchair

- Marked reduction in tone, pain, spasm intensity and frequency. Increased ease in positioning, hoisting, hygiene and dressing

Aspects of IP Service

- Spasticity assessment & measures
- Expert injector
- Local anaesthetic trial as inpatient
- Nursing, physio and Wh/C service follow up
- Repeat injections may be necessary
Lumbar spinal anatomy

Motor nerves

Sensory nerves

Cerebrospinal fluid
Right lateral position

- Front

- Sensory nerves

- Motor nerves

90°
Lumbar puncture
Modified right lateral position

30°

Front
Insertion of Phenol
End Result

- Damaged motor nerve
Reserved for severe cases

Peripheral Neurotomies
- Microsurgical technique; preservation of ~1/4 fibres prevents excessive weakness and wasting

Selective Dorsal Rhizotomy
- Predominantly children with cerebral palsy
- Selection of rootlets divided

MicroDREZotomy *(DREZ- dorsal root entry zone)*
- Microsurgical incisions, 2-3mm in depth, 35-45 degree angle
- Useful for pain
Consider only after spasticity treated and goal orientated

- **Tendon lengthening**
 - Aim; to achieve a more functional position of limb

- **Tendon transfer**
 - Used to normalise articular orientation
 - E.g. distal tendon of peroneus brevis onto the tibialis anterior for equinovarus foot

- **Osteotomies**
 - Correct bony deformity from abnormal childhood growth

- **Articular surgery (arthrodesis)**
 - Last resort and never in growing children
MDT Management

Nurses
Skin, Bladder, Bowel
Drug education
Positioning

PT
Standing, Positioning, Stretching, Exercise programme, Splinting, FES, Monitoring treatment

PWS / Carer
Monitor aggravating factors
Exercise / stretching
Monitor drug effectiveness

OT
Adaptations
Wheelchair
Positioning
Splinting
Role/ function

DR
Timing of assessments & treatments
Drug prescribing & evaluating

Wessex ACPIN Spasticity Presentation 2009. © Dr Val Stevenson
Acknowledgements

To all of the patients who consented to their photos being used to help with education and training of health professionals

To you all for listening....

Any questions?